# MI/RR R&D

Ioanis Kourbanis/Rob Ryne Project X Collaboration Meeting September 8-9, 2010



## **Main Elements**



- Develop a new MI RF system including a second harmonic cavity with enough power to accelerate the Project X intensities.
  - We plan to use the same RF cavities in Recycler
- Investigate and simulate e-cloud effects in MI with current intensities.
  Simulate e-cloud beam effects with Project X intensities. Investigate ways to mitigate the e-cloud effects (coatings).
- Simulate space charge effects in MI. Determine how much of space charge tune shift we can tolerate with Project X intensities.
- Design a gamma-t jump for MI.
  - Design already developed.



#### **New MI RF**



- Have fixed the rf frequency and developed the rf requirements.
  - Have expanded the tuning range from 6GeV-120GeV.
- Have developed an RF cavity design with perpendicular biased tuners and R/Q~60 Ohms. We are collaborating with SLAC in optimizing the cavity shape.
  - Working on the HOM dampers.
- We have bought a high power tube (Eimac 8973) that can drive the new cavity and plan to build a PA for testing.
- The goal is to have a cavity design review in FY11.



### E-Cloud



- Continuing the e-cloud simulations and comparisons with measurements. Started new simulations using VORPAL (Tech-X).
- Have established dedicated measurement set-up in MI-52 and have developed new RFA detectors. Have mw measurements set-ups at MI-40 and MI-52.
  - Have already installed a TiN coated beam piece and compared it with SS.
- We are getting ready to establish our own beam-pipe coating set-up in E4R. Our goal is to coat a beam-pipe inside an MI dipole with TiN in collaboration with SLAC.
- We are collaborating with CERN and we are learning from their experience with amorfous carbon coatings.
  - Have received a carbon coated beam pipe piece that was installed in MI-52



# **Space Charge**



- Start MI space charge simulations using two different codes Synergia (FNAL) and IMPACT(LBNL).
  - Bench mark each code against each other w/w.o SC using the MI lattice.
  - Include the MI aperture and compare simulations predictions of losses with current operations.
  - Predict the sc tune shifts (spreads) and losses with and without second harmonic and bunch intensities of 3E11.
- Produce intense bunches at 8 GeV in MI for space charge measurements.